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The problem with initial data for perturbations in laminar flows is con- 

sidered, A modification of the method proposed in [l] is used for in- 
vestigating the development of perturbations with time, The problem 
is solved for initial conditions and Reynolds numbers close to the critical 

value defined in the theory of stability. Conditions of secondary flow 
existence are obtained by the analysis of the expression for perturbations, 
and their stability is investigated. The results related to secondary flows 
are in agreement with those presented in [: 2.31. 

An approximate formula for the variation of perturbation amplitude with time was 

proposed by Landau t4 ], His ideas were further developed in [ 5,6]. A method similar 

to that of Poincar6 was proposed in [l] for analyzing nonlinear equations for perturbations, 

and in [Z, 33 the conditions of existence and the stability of self-oscillating modes that 

originate at the loss of laminar flow stability were investigated. 
Let us consider the two-dimensional flow of a viscous incompressible fluid. The 

equations for the stream function 9 (x, I/, t) are of the form 

where R is the Reynolds number. 
Substituting + = %$a (z, g) + @ (5, Y, $1 , where 90 (5, Y) is the stream 

function of the stationary iaminar flow and @ (5, y, t) is the perturbation stream 

function, into (1) for @ (5, y; t) we obtain the equation 
(2) 

The form of boundary conditions for (I? depends on the particulars of a problem. 
Below we consider one of the following cases. 

1’ . The flow takes place in the bounded region 5;! whose boundary is dR , and 
the boundary conditions for @ are 

821 



822 B. Iu. Skobelev and V. V. Struminskii 

2”. The flow is periodic with respect to Z (‘$0 E$o (Y)) with a bounded fundamen- 
tal region of the three-dimensional periodicity Q = {z, y: 0 dJ: 4 T; y1 4 

y < ys}. The boundary conditions are 

3”. The flow in the boundary layer is considered in a plane-parallel approximation. 

The three-dimensional periodicity region is Q= {“,Y:~,<LI:< T; O<y<+ 
and the boundary conditions are 

T 

alo s * CD&, cD~==~L,-Q) 

(It can be shown that in t&s case the results obtained in [Z] are valid.) 
We denote by W the set of functions that satisfy the boundary conditions of any of 

these problems, and seek the solution @ E W of the nonlinear equation (2) by using 
a method similar to that in [l]. We set 

(3) 

6 , m 
dt = Y -I- c h,A”(El), 

*=1 n=1 

(4) 

where h and 8 are the initial amplitude and phase, respectively, and @, (5, y,ts) 
are periodic functions of E, of period 2n. We assume that h is a small parameter. 
Substituting (3) and (4) into (2) and equating terms of like order of J,, for mn we obtain 

the equations 

(5) 

Lq = M ($,, cp) i- R-‘A‘$ 

In what follows we assume that the linear boundary value problem 

iobcp - Lcp = 0, cp E w (6) 

has two simple real eigenvalues -t m. when R = Ro and that among the numbers 

no, (n is an integer and n # + 1) there are no eigenvalues of problem (6). We 

seek the solution of system (5) in the form of series in the small parameter 6 
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b, = jj b,,,6" 
k=I k=l k=o 

CG cv 

c, = 
c 

c,k6x, a& = 
c 

6’2(1>,, (x, y, Ez), 6 = f - + 

k=o k=V 
0 

(7) 

Substituting (7) into (5) and equating terms of like powers Of 6, we obtain 

For or0 the right-hand side of Eq.(B) is zero. Taking into account that @r. is a perio- 
dic function of &, we obtain 

CDIo = u (5, y)eic2 + U* (s, y)e+sz 
(9) 

where U (Z, Y) is the eigenfunction of problem (6) when R = R. and o = Oo. 
We introduce the normalization conditions 

\ 
v* (x, y) Au (x, y) dx dy = 1 

(10) 

h 

an 

ss 
v*e-i~zACD)nk dx dy cl& = 0 for n + 1, k + 0 

0b-J 

where v (2, y) is the solution of the conjugate equation of (6) in L, (8) when R = R, 
and o = oo. 

The conditions of solvability of the nonhomogeneous equations for @,,% when 
n # 1 and k # 0, which are similar to those in [2], determine the unknown constants 

yk, ok, c&, and bnk. Coefficients ‘y.k and ok are determined by the conditions of 

solvability of equations for @rk (k > 1). In particular 

yI=--ReJ, J=\ v*A”u dxdjy 
(11) 

h 

(formula (11) was obtained with allowance for the normalization condition (10) ). Fun- 
ctions mix (k = 1, 2, . . .) are of the form 

(12) 
@,I, = r&k (x, y) eis + Uk* (.)_, y) emik 
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Let us consider the system of Eqs.(8) when TV = 2. The conditions of solvability with 
allowance for (9) and (12) yield 

6,, = Cllr = 0, i< _Z 0, 1, :! . . . 

The normalization condition (10) uniquely determines @.21r 

mZr = rpro (5, y) + vkz (2, y)ezit2 + ‘pk2* (z, y)e+~~, k - 0, 1. . . . 

Coefficients b,, and Czk are determined by the conditions of solvability of sys- 

tem (8) when n = 3. In particular 

b 2,, = Re I, czo = Im 1 (13) 

2x 

I= 
ss 

e-%*M (Qlo, C&O) dJ: dy dg-3 

0 P 

By successively solving system (8) we can determine all functions @nk and coeffi- 

cients bnk and c,~. Using the method of induction it is possible to show that 

(&k(k = 0, 1, 2 . . .) for even rz contains only even harmonics and for odd n 

the harmonics are odd, &d that. b,lk = cnk = 0 (k = 0, 1, 2 . . .) when n is odd. 

Let us consider Eq. (4) for &. 

Let y1 and b,, be nonzero. Then in the first approximation with respect to 6 

and hZ we obtain 

es 

t s a1 = 
Yl6 + b”A2 

0 

(14) 

(If y1 or b20 are zero, it is necessary to take into account in formula (4) the next terms 

of expansion in 6 and h2. ) Substituting A = ?&l we obtain for A (t) the expression 

A(t) = 
dh2e2vlSt “2 

d - 2.2 ) hvqlt > 
, d=-+!% 

3” 

(15) 

Noting that y is the coefficient of perturbation increase in the linear theory of sta- 
bility, we shall investigate formula (15). 

Let y16 > 0 (the supercritical case) - 
If d > 0, then A (t) -+ d”g = A, when t --t 00 , i.e. there exists a stable 

secondary flow. From (11) and (13) we obtain 

A0 = (+6)‘* 
( 16) 

When d < 0, then A --f 00 when t + (2~~6)~~ In (1 + 1 d 1 / As), i.e. there 

are no equilibrium modes of small amplitude. 

Let y16 < 0 (the subcritical case). 

If d > 0, a secondary equilibrium mode obtains for the unique initial value 

A, = &‘* zz A,. When A < A, , perturbations are attenuated, while for 3, >% ho 

they infinitely increase in the finite time interval t = ($,6)-l In (1 - d / k2), 
i. e. the secpndary subcritical modes are unstable. 

When d < 0 all perturbations are attenuated, and there are no secondary flows 
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of small amplitude. 
Let 6 = 0 (the indifferent case), 

From (15j we have 

A (t) = h (1 - 2Aab,,t)-“x 

When bs, < 0 , the perturbations attenuate, while 
increase in the finite time interval t = (2habzo)-‘. 

for b,, > 0 they infinitely 

Formula (16) for the amplitude, the region of existence, and the form of stream 
functions of secondary equilibrium flows conform to the results presented in [2]. It can 

be shown that the derived series (3) and (7) are asymptotic expansions of the solution of 
Eq.(2) in small parameters 6 and h. 

The quantity y lb r sa was numerically determined for some simple flows in several 
papers in connection with the investigation of secondary equilibrium modes. For exam- 

ple, for a plane Poiseuille flow, in (7) and for a Blasius flow, in [S]. 

When Re J # 0, y may be taken as the parameter of the expansion for solving 
system (5). Applying a reasoning similar to the above, it is possible to show that in the 
first approximation with respect to Y and h 2 the formula for A (t). is of the form (15 ) 
in which+= y and d =- y/b,,,.The relation between 6 and y is defined by formula 

02 

6 = c 8,Y”, 
1 

61=-w 
k=l 
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